solar hour angle derivations
- solar hour angle from datetime and longitude - symbol - description - unit - variable name - \(EOT\) - equation of time - \(minutes\) - \(t\) - datetime (UTC) - \(s\) since 2000-01-01 - datetime {time} - \(\eta\) - orbit angle of the earth around the sun - \(rad\) - \(\lambda\) - longitude - \(degE\) - longitude {time} - \(\omega\) - solar hour angle - \(deg\) - solar_hour_angle {time} \begin{eqnarray} A & = & 2\pi \left( \frac{t + 10 \cdot 86400}{365.2422 \cdot 86400} - \lfloor \frac{t + 10 \cdot 86400}{365.2422 \cdot 86400} \rfloor \right) \\ B & = & A + 2 \cdot 0.0167 \sin( 2\pi \left( \frac{t - 2 \cdot 86400}{365.2422 \cdot 86400} - \lfloor \frac{t - 2 \cdot 86400}{365.2422 \cdot 86400} \rfloor \right) ) \\ C & = & \frac{A - \arctan(\frac{\tan(B)}{cos(\frac{\pi}{180} 23.44)})}{\pi} \\ EOT & = & 720 \left( C - \lfloor C + 0.5 \rfloor \right) \\ \omega & = & \lambda + 360 \left( \frac{t}{86400} - \lfloor \frac{t}{86400} \rfloor + \frac{EOT}{24 \cdot 60} \right) - 180 \end{eqnarray}- The solar hour angle will be mapped to [-180,180].